Variance reduction using a non-informative sampling design
نویسندگان
چکیده
منابع مشابه
Variance reduction in large graph sampling
The norm of practice in estimating graph properties is to use uniform random node (RN) samples whenever possible. Many graphs are large and scale-free, inducing large degree variance and estimator variance. This paper shows that random edge (RE) sampling and the corresponding harmonic mean estimator for average degree can reduce the estimation variance significantly. First, we demonstrate that ...
متن کاملEstimation of Variance of Normal Distribution using Ranked Set Sampling
Introduction In some biological, environmental or ecological studies, there are situations in which obtaining exact measurements of sample units are much harder than ranking them in a set of small size without referring to their precise values. In these situations, ranked set sampling (RSS), proposed by McIntyre (1952), can be regarded as an alternative to the usual simple random sampling ...
متن کاملDigital Filter Design Using Non-Uniform Sampling
In this paper, a non-uniform sampling algorithm is proposed for one-dimensional bandlimited time varying signals. The main feature of the proposed sampling scheme is that the sampling steps are inversely proportional to signal gradient or slope of the signal. As a result, a smaller sampling step is obtained whenever the gradient is high and vice-versa. Thus, a better representation of the signa...
متن کاملEstimating Variance of the Sample Mean in Two-phase Sampling with Unit Non-response Effect
In sample surveys, we always deal with two types of errors: Sampling error and non-sampling error. One of the most common non-sampling errors is nonresponse. This error happens when some sample units are not observed or viewed but they do not answer some of the questions. The complete prevention of this error is not possible, but it can be significantly reduced. The non-response causes bias and ...
متن کاملVariance Reduction for Faster Non-Convex Optimization
We consider the fundamental problem in non-convex optimization of efficiently reaching a stationary point. In contrast to the convex case, in the long history of this basic problem, the only known theoretical results on first-order non-convex optimization remain to be full gradient descent that converges in O(1/ε) iterations for smooth objectives, and stochastic gradient descent that converges ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Journal of the IAOS
سال: 2018
ISSN: 1874-7655,1875-9254
DOI: 10.3233/sji-170358